Directions and Applications for Constructive Semantics in Description Logics

Loris Bozzato

DKM - Data and Knowledge Management Research Unit,
FBK-Irst, Fondazione Bruno Kessler - Trento, Italy

DKM internal seminar
May 2011
Acknowledgements

This presentation is a summary of my work with:

- **Mauro Ferrari**
 DICOM, Università degli Studi dell’Insubria - Varese, Italy

- **Camillo Fiorentini**
 DSI, Università degli Studi di Milano - Milano, Italy

- **Guido Fiorino**
 DIMEQUANT, Università degli Studi di Milano-Bicocca - Milano, Italy

- **Paola Villa**
 PhD at DICOM, Università degli Studi dell’Insubria - Varese, Italy
Outline

1. Introduction
2. *BCDL*: information terms semantics for *ALC*
3. *KALC*\(\infty\): Kripke-style semantics for *ALC*
4. *KALC*: decidable Kripke-style interpretation for *ALC*
5. Application directions
Introduction

1. **Introduction**

2. **BCDL**: information terms semantics for \mathcal{ALC}

3. **\mathcal{KALC}^∞**: Kripke-style semantics for \mathcal{ALC}

4. **\mathcal{KALC}**: decidable Kripke-style interpretation for \mathcal{ALC}

5. Application directions
Constructive logics

Formalizations of ideas from constructivism

A proof of \(A \land B \) is composed from proofs of \(A \) and \(B \).

A proof of \(A \lor B \) is composed of a proof for \(A \) or \(B \).

A proof of \(A \rightarrow B \) is construction transforming proofs of \(A \) in proofs for \(B \).

\(\bot \) is an unprovable formula (thus \(A \rightarrow \bot = \neg A \)).

Possible formalizations:
- Intuitionism
- Recursive realizability
- Information terms semantics
Constructive logics

Formalizations of ideas from constructivism

Brouwer-Heyting-Kolmogorov (BHK) or proof interpretation

Semiformal presentation of a constructive semantics

E.g. propositional part:

- A proof of $A \land B$ is composed from proofs of A and B
- A proof of $A \lor B$ is composed of a proof for A or B
- A proof of $A \rightarrow B$ is construction transforming proofs of A in proofs for B
- \bot is an unprovable formula (thus $A \rightarrow \bot = \neg A$)

Possible formalizations:

- Intuitionism
- Recursive realizability
- Information terms semantics
Constructive logics

- **Characteristic properties:**
 - **Disjunction property** (DP):
 “Whenever it proves a disjunction formula, it proves one of the disjoints”
 - **Explicit definability property** (ED):
 “Whenever it proves an existential formula, it presents a witness of the existence”

- **Constructivism and Computer Science:**
 - **Formulas-as-types** (Curry-Howard isomorphism)
 - **Proofs-as-programs**
Constructive description logics

Constructive interpretations of description logics

Motivations

- Computational interpretation of proofs and formulas
- Useful in domains with dynamic and incomplete knowledge

Known proposals

- [de Paiva, 2005]: translations of DLs in constructive systems
- [Kaneiwa, 2005]: definitions for different constructive negations in DLs
- [Odintsov and Wansing, 2003]: inconsistency tolerant version of DLs
- [Mendler and Scheele, 2010]: Kripke semantics with “fallible” elements
Introduction | Constructive description logics

Proposal [de Paiva, 2005]

Motivation

- Extend proof-theoretical results (Curry-Howard) on DLs
- Define a context-sensitive DL

Proposals

3 different interpretations of \mathcal{ALC} in constructive systems:

- IALC: from \mathcal{ALC} to IFOL (via $\mathcal{ALC} \rightarrow \text{FOL}$ translation)
- iALC: from \mathcal{ALC} to IK (via $\mathcal{ALC} \rightarrow K_m$ translation)
- cALC: from \mathcal{ALC} to CK (via $\mathcal{ALC} \rightarrow K_m$ translation)
Proposal [Kaneiwa, 2005]

Motivation

Representation of different notions of negative information in DLs (contraries, contradictories and subcontraries)

E.g. difference between Happy, Unhappy, $\neg \text{Happy}$, $\neg \text{Unhappy}$

Proposals

- 2 different extensions to \mathcal{ALC} semantics
 (different interactions between constructive and classical negation)
- tableaux algorithm for satisfiability

Similar works: [Kamide, 2010a, Kamide, 2010b]

Paraconsistent and temporal versions of \mathcal{ALC}, based on a similar semantics
Proposal [Odintsov and Wansing, 2003]

Ideas

- Paraconsistent versions of \mathcal{ALC}
- Constructive semantics to represent partial information

Proposal [Odintsov and Wansing, 2003]

- 3 constructive paraconsistent semantics for \mathcal{ALC}
 (Different translations to four valued logic $N4$)
- complete tableaux calculus for each logic

Further work [Odintsov and Wansing, 2008]

Reviews of calculi, tableaux procedure for one of the presented logics
Proposal [Mendler and Scheele, 2010]

Idea

- Representation of partial knowledge and consistency under abstraction
- Evolving OWA: stages of information with changing properties and abstract individuals

Proposal

$c\text{ALC}$: Kripke semantics for ALC with fallible entities

- fallible entities \bot^T: contradictory domain elements (maximal poset elements or undefined role fillers)
- complete and decidable Hilbert and tableaux calculi

Application [Mendler and Scheele, 2009]

Reasoning on data streams in auditing domain
Our proposals

BCDL [Bozzato et al., 2007, Bozzato et al., 2009b, Ferrari et al., 2010]

- Information terms semantics + natural deduction calculus
 - computational interpretation of proofs (*Proofs as programs*)

K\(\mathcal{ALC}^\infty\) [Bozzato et al., 2009a, Villa, 2010]

- Kripke-style semantics + tableaux calculus
 - possibly infinite models, efficient treatment of implications

K\(\mathcal{ALC}\) [Bozzato et al., 2010, Bozzato, 2011]

- Kripke-style semantics + tableaux algorithm
 - finite models, decidability from terminating tableau procedure
Outline

1. Introduction

2. \textit{BCDL}: information terms semantics for \textit{ALC}

3. \textit{KALC}^\infty: Kripke-style semantics for \textit{ALC}

4. \textit{KALC}: decidable Kripke-style interpretation for \textit{ALC}

5. Application directions
BCDL: Basic Constructive Description Logic [Ferrari et al., 2010]

- Information terms semantics for \mathcal{ALC}
- Natural deduction calculus \mathcal{ND}_c

Information terms [Miglioli et al., 1989]

Syntactic objects justifying validity of formulas in classical models

- realization of BHK interpretation
- related to realizability interpretations
BCDL: information terms semantics for **ALC**

BCDL: Basic Constructive Description Logic [Ferrari et al., 2010]
- Information terms semantics for **ALC**
- Natural deduction calculus \mathcal{ND}_c

Information terms [Miglioli et al., 1989]
- Syntactic objects justifying validity of formulas in classical models
 - realization of BHK interpretation
 - related to realizability interpretations

Features:
- Classical reading of DL formulas
- Simple proof theoretical characterization by \mathcal{ND}_c
- Computational interpretation of proofs
- Natural notion of state
ALCG syntax and classical semantics

Syntax is the same as \mathcal{ALC}, adding a set of generators \mathcal{NG}

Concepts

$$C ::= A \mid G \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \exists R.C \mid \forall R.C$$

Formulas

$$K ::= \bot \mid (t,s) : R \mid t : C \mid \forall G C$$

where $A \in \mathcal{NC}$, $R \in \mathcal{NR}$, $t,s \in \mathcal{NI}$ and $G \in \mathcal{NG}$

Generators \mathcal{NG}

Concepts over fixed set of individual names $dom(G) = \{c_1, \ldots, c_n\}$

→ limited form of subsumption: $\forall_G C \equiv G \sqsubseteq C$
Validity of formulas: given a model $\mathcal{M} = (\Delta^\mathcal{M}, \cdot^\mathcal{M})$

$\mathcal{M} \not\models \bot$

$\mathcal{M} \models (t, s) : R \iff (t^\mathcal{M}, s^\mathcal{M}) \in R^\mathcal{M}$

$\mathcal{M} \models t : H \iff t^\mathcal{M} \in H^\mathcal{M}$

$\mathcal{M} \models \forall_G H \iff G^\mathcal{M} = \{c_1^\mathcal{M}, \ldots, c_n^\mathcal{M}\} \subseteq H^\mathcal{M}$
Information terms $\text{IT}_N(K)$

Structured objects that **constructively justify the truth** of a formula K

- $\text{IT}_N(K) = \{tt\}$, if K is atomic
- $\text{IT}_N(c : C_1 \sqcup C_2) = \{(k, \alpha) \mid k \in \{1, 2\} \text{ and } \alpha \in \text{IT}(c : C_k)\}$
BCDL information terms semantics

Information terms $\text{IT}_N(K)$

Structured objects that **constructively justify the truth** of a formula K

\[
\text{IT}_N(K) = \{ tt \}, \text{ if } K \text{ is atomic}
\]

\[
\text{IT}_N(c : C_1 \sqcup C_2) = \{ (k, \alpha) | k \in \{1, 2\} \text{ and } \alpha \in \text{IT}(c : C_k) \}
\]

Realizability $\mathcal{M} \triangleright \langle \alpha \rangle K$

Truth of K in a model \mathcal{M} justified w.r.t. α

\[
\mathcal{M} \triangleright \langle tt \rangle K \text{ iff } \mathcal{M} \models K
\]

\[
\mathcal{M} \triangleright \langle (k, \alpha) \rangle c : C_1 \sqcup C_2 \text{ iff } \mathcal{M} \triangleright \langle \alpha \rangle c : C_k
\]
BCDL information terms semantics

Information terms $\text{IT}_N(K)$
Structured objects that **constructively justify the truth** of a formula K

$\text{IT}_N(K) = \{tt\}$, if K is atomic
$\text{IT}_N(c : C_1 \sqcup C_2) = \{(k, \alpha) \mid k \in \{1, 2\} \text{ and } \alpha \in \text{IT}(c : C_k)\}$

Realizability $\mathcal{M} \triangleright \langle \alpha \rangle K$
Truth of K in a model \mathcal{M} justified w.r.t. α

$\mathcal{M} \triangleright \langle tt \rangle K$ iff $\mathcal{M} \models K$
$\mathcal{M} \triangleright \langle (k, \alpha) \rangle c : C_1 \sqcup C_2$ iff $\mathcal{M} \triangleright \langle \alpha \rangle c : C_k$

Theorem (classical and IT semantics)
$\mathcal{M} \models K$ iff there exists $\alpha \in \text{IT}(K)$ such that $\mathcal{M} \triangleright \langle \alpha \rangle K$
$\text{IT}_N(K) = \{tt\}$ for K atomic or negated

$\text{IT}_N(c : C_1 \cap C_2) = \text{IT}(c : C_1) \times \text{IT}(c : C_2)$

$\text{IT}_N(c : C_1 \cup C_2) = \text{IT}(c : C_1) \uplus \text{IT}(c : C_2)$

$\text{IT}_N(c : \exists R.C) = N \times \bigcup_{d \in N} \text{IT}(d : C)$

$\text{IT}_N(c : \forall R.C) = (\bigcup_{d \in N} \text{IT}(d : C))^N$

$\text{IT}_N(\forall G) = \left(\bigcup_{d \in \text{dom}(G)} \text{IT}(d : C) \right)^{\text{dom}(G)}$

$\mathcal{M} \models \langle \text{true} \rangle K$ iff $\mathcal{M} \models K$

$\mathcal{M} \models \langle (\alpha, \beta) \rangle c : C_1 \cap C_2$ iff $\mathcal{M} \models \langle \alpha \rangle c : C_1$ and $\mathcal{M} \models \langle \beta \rangle c : C_2$

$\mathcal{M} \models \langle (k, \alpha) \rangle c : C_1 \cup C_2$ iff $\mathcal{M} \models \langle \alpha \rangle c : C_k$

$\mathcal{M} \models \langle (d, \alpha) \rangle c : \exists R.C$ iff $\mathcal{M} \models (c, d) : R$ and $\mathcal{M} \models \langle \alpha \rangle d : C$

$\mathcal{M} \models \langle \phi \rangle c : \forall R.C$ iff $\mathcal{M} \models c : \forall R.C$ and, for every $d \in N$, if $\mathcal{M} \models (c, d) : R$ then $\mathcal{M} \models \langle \phi(d) \rangle d : C$

$\mathcal{M} \models \langle \phi \rangle \forall G$ iff, for every $d \in \text{dom}(G)$, $\mathcal{M} \models \langle \phi(d) \rangle d : C$
Calculus \mathcal{ND}: natural deduction calculus for \mathcal{ALCG}

Rules

\[
\begin{align*}
\Gamma & \vdash \pi' \\
\top : A_k \\
t : A_1 \sqcup A_2 & \vdash I_k \\
\Gamma_1 \vdash \pi_1 \\
\Gamma_2, [(t, p) : R, p : A] & \vdash \pi_2 \\
t : \exists R. A & \vdash K \\
\Gamma' & \vdash \pi' \\
\forall G A & \vdash t : G \\
\forall G E & \vdash t : A \\
\top & \vdash \perp \\
\Gamma, [t : \neg H] & \vdash \neg E
\end{align*}
\]

Theorem

- \mathcal{ND} is sound and complete w.r.t. \mathcal{ALCG}
- Leaving aside generators rules, \mathcal{ND} is sound and complete w.r.t. \mathcal{ALC}
Calculus \mathcal{ND}_c: natural deduction calculus for $BCDL$

Rules

Every rule from \mathcal{ND} (minus $\neg E$)

\[
\frac{\Gamma \vdash \pi'}{t : \neg \neg C} \quad \text{At} \quad \frac{\Gamma \vdash \pi'}{t : \forall R. \neg \neg H} \quad \text{KUR}
\]

\[t : \neg \neg \forall R. H \]

Note

KUR corresponds to the Kuroda axiom schema Kur

\[\text{Kur} \equiv \forall x. \neg \neg A(x) \rightarrow \neg \neg \forall x. A(x)\]
Soundness of \mathcal{ND}_c

Operator $\Phi_{\mathcal{N}}^\pi$: Given a proof $\pi : \Gamma \vdash K$ over \mathcal{N}:

$$\Phi_{\mathcal{N}}^\pi : IT_{\mathcal{N}}(\Gamma) \rightarrow IT_{\mathcal{N}}(K)$$

Note: computable function, inductively defined on depth of π

Example: $\sqcup I_k$

If last rule in π is $\sqcup I_k$ with $k \in \{1, 2\}$, then:

$$\Phi_{\mathcal{N}}^\pi : IT_{\mathcal{N}}(\Gamma) \rightarrow IT_{\mathcal{N}}(t : C_1 \sqcup C_2)$$

defined as:

$$\Phi_{\mathcal{N}}^\pi(\overline{\gamma}) = (k, \Phi_{\mathcal{N}}^{\pi'}(\overline{\gamma}))$$

$\sqcup I_k$ rule

$$
\begin{array}{c}
\Gamma \\
\vdots \pi' \\
t : A_k \\
\hline
\sqcup I_k \\
\hline
t : A_1 \sqcup A_2
\end{array}
$$
Soundness of \mathcal{ND}_c: computational interpretation

Theorem (Soundness)

If $\pi : \Gamma \vdash K$, then:

- $\Gamma \models K$.
- If $M \triangleright \langle \gamma \rangle \Gamma$ then $M \triangleright \langle \Phi^\pi_N(\gamma) \rangle K$. (constructive consequence)

Computational interpretation

- Given a proof π of a formula K...
- ...its Φ^π_N provides a “program” to compute an IT for K
Theorem (Completeness)

\(\Gamma \vdash_{BCDL} K \) iff \(K \) is a constructive consequence of \(\Gamma \).

Constructive properties

For \(\Gamma \) of Harrop formulas (no \(\sqcap \) and \(\exists \)):

- **Disjunction property (DP):**
 If \(\Gamma \vdash_{BCDL} c : A \sqcup B \), then \(\Gamma \vdash_{BCDL} c : A \) or \(\Gamma \vdash_{BCDL} c : B \).

- **Explicit definability property (EDP):**
 If \(\Gamma \vdash_{BCDL} c : \exists R.A \), then there exists \(d \in NI \) such that \(\Gamma \vdash_{BCDL} (c, d) : R \) and \(\Gamma \vdash_{BCDL} d : A \).
1. Introduction

2. $BCDL$: information terms semantics for ALC

3. $KALC^\infty$: Kripke-style semantics for ALC

4. $KALC$: decidable Kripke-style interpretation for ALC

5. Application directions
\(\mathcal{KALC}^\infty \): Kripke-style semantics for \(\mathcal{ALC} \)

- Kripke-style semantics for \(\mathcal{ALC} \)
- Tableaux calculus \(\mathcal{T} \)

Features:
- Final state conditions on models, related to Kur
- Tableaux calculus with efficient treatment of duplications
\mathcal{KALC}^{∞} syntax and classical semantics

Concepts

$$C ::= A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid C \rightarrow C \mid \exists R.C \mid \forall R.C$$

Formulas

$$K ::= \bot \mid (t,s) : R \mid t : C \mid C$$

where $A \in NC$, $R \in NR$, $t,s \in NI$.

→ compared to \mathcal{BCDL}: implication (unrestricted \sqsubseteq) and no generators
\mathcal{KALC}^∞: Kripke-style semantics for \mathcal{ALC}

Concepts

\[C ::= A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid C \rightarrow C \mid \exists R.C \mid \forall R.C \]

Formulas

\[K ::= \bot \mid (t,s) : R \mid t : C \mid C \]

where $A \in \text{NC}$, $R \in \text{NR}$, $t,s \in \text{NI}$.

→ compared to BCDL: implication (unrestricted \sqsubseteq) and no generators

Validity of formulas

Given a model $\mathcal{M} = (\Delta^\mathcal{M}, \cdot^\mathcal{M})$

- $\mathcal{M} \not\models \bot$
- $\mathcal{M} \models (t,s) : R$ if $$(t^\mathcal{M}, s^\mathcal{M}) \in R^\mathcal{M}$$
- $\mathcal{M} \models t : C$ if $t^\mathcal{M} \in C^\mathcal{M}$
- $\mathcal{M} \models C$ if $C^\mathcal{M} = \Delta^\mathcal{M}$
K\textit{ALC}^\infty: Kripke-style semantics for ALC

Rooted poset:

Given a (rooted) poset \((P, \leq)\), **final**: \(\phi \in P\) such that, for every \(\alpha \in P\), \(\phi \leq \alpha\) implies \(\phi = \alpha\).

K-posets

- Given a (rooted) poset \((P, \leq)\), **final**: \(\phi \in P\) such that, for every \(\alpha \in P\), \(\phi \leq \alpha\) implies \(\phi = \alpha\).
- **K-poset**: every poset \((P, \leq)\) such that, for every \(\alpha \in P\), \(\text{Fin}(\alpha) \neq \emptyset\).
KALC\(^\infty\)-models

KALC\(^\infty\)-model \(K = \langle P, \leq, \rho, \iota \rangle\)

- \((P, \leq)\) is a K-poset with root \(\rho\);
\(\mathcal{KALC}^\infty \)-models

\(\mathcal{KALC}^\infty \)-model \(K = \langle P, \leq, \rho, i \rangle \)

- \((P, \leq)\) is a \(K \)-poset with root \(\rho \);
- \(i(\alpha) = (D^\alpha, \cdot^\alpha) \) such that, for every \(\alpha, \beta \in P \) with \(\alpha \leq \beta \):
 1. \(D^\alpha \subseteq D^\beta \);
 2. for every \(c \in NI \), \(c^\alpha = c^\beta \);
 3. for every \(C \in NC \), \(C^\alpha \subseteq C^\beta \);
 4. for every \(R \in NR \), \(R^\alpha \subseteq R^\beta \).
\mathcal{KALC}^∞-models

\mathcal{KALC}^∞-model $K = \langle P, \leq, \rho, \iota \rangle$

- (P, \leq) is a K-poset with root ρ;
- $\iota(\alpha) = (D^\alpha, \cdot^\alpha)$ such that, for every $\alpha, \beta \in P$ with $\alpha \leq \beta$:
 1. $D^\alpha \subseteq D^\beta$;
 2. for every $c \in NI$, $c^\alpha = c^\beta$;
 3. for every $C \in NC$, $C^\alpha \subseteq C^\beta$;
 4. for every $R \in NR$, $R^\alpha \subseteq R^\beta$.
\(\mathcal{KALC}^\infty \): Kripke-style semantics for \(\mathcal{ALC} \)

\(\mathcal{KALC}^\infty \)-models

\(\mathcal{KALC}^\infty \)-model \(K = \langle P, \leq, \rho, \iota \rangle \)

1. \((P, \leq) \) is a \(K \)-poset with root \(\rho \);
2. \(\iota(\alpha) = (D^\alpha, \cdot^\alpha) \) such that, for every \(\alpha, \beta \in P \) with \(\alpha \leq \beta \):
 - \(D^\alpha \subseteq D^\beta \);
 - for every \(c \in \text{NI} \), \(c^\alpha = c^\beta \);
 - for every \(C \in \text{NC} \), \(C^\alpha \subseteq C^\beta \);
 - for every \(R \in \text{NR} \), \(R^\alpha \subseteq R^\beta \).

Forcing relation (examples)

\[\alpha \models t : A, \text{ where } A \in \text{NC} \text{ iff } t^\alpha \in A^\alpha \]
\[\alpha \models t : C \rightarrow D \text{ iff } \forall \beta \in P \text{ s.t. } \alpha \leq \beta, \beta \models \neg t : C \text{ or } \beta \models t : D \]
\[\alpha \models t : \neg C \text{ iff } \forall \beta \in P \text{ s.t. } \alpha \leq \beta, \beta \models \neg t : C \]
\[\alpha \models t : \forall R.C \text{ iff } \forall \beta \in P \text{ s.t. } \alpha \leq \beta \text{ and } \forall d \in D^\beta, \beta \models (t, d) : R \Rightarrow \beta \models d : C \]
Kur and final states

Kur

The condition on final states can be characterized by Kur:

\[\text{Kur} : \forall R. \neg \neg A \rightarrow \neg \neg \forall R. A \]

Kur axiom schema

Let \(K \) be any instance of the axiom schema Kur in \(\mathcal{L} \) and let \(K = \langle P, \leq, \rho, \iota \rangle \) be a \(\mathcal{K}\mathcal{A}\mathcal{L}\mathcal{C}^\infty \)-model for \(\mathcal{L} \), then \(\rho \models K \).

Final worlds \(\phi \)

Maximal elements w.r.t. \(\leq \) relation

- \(\phi \) represents states of **complete knowledge**
- \(\phi \) behave like classical models: \(\phi \models c : A \sqcup \neg A \)

 this directly comes from forcing of \(\neg A \)!
Tableau calculus \mathcal{T} for \mathcal{KALC}^∞

Tableau calculus \mathcal{T}

- Refutation calculus: the negation of a formula cannot be satisfied
- Decompose sets of signed formulas (T, F, F_c) building a proof tree

Signed formulas

- $T(A)$: A is true;
- $F(A)$: A is false;
- $F_c(A)$: A will never be true;

S is contradictory iff $\{T(A), F(A)\} \subseteq S$, $\{T(A), F_c(A)\} \subseteq S$

Features

- Sound and complete w.r.t. \mathcal{KALC}^∞ semantics
- \mathcal{KALC}^∞ Disjunction Property
Relevant rules of \mathcal{T}

\[
\begin{align*}
S, T(t : A \sqcup B) & \quad \quad S, F(t : A \sqcup B) & \quad \quad S, F_c(t : A \sqcup B) \\
\hline
S, T(t : A) & \quad \quad S, T(t : B) & \quad \quad S, F(t : A) & \quad \quad S, F(t : B) & \quad \quad S, F_c(t : A) & \quad \quad S, F_c(t : B)
\end{align*}
\]
Relevant rules of \mathcal{T}

\[
\begin{align*}
S, T(t : A \sqcup B) & \quad S, T(t : A) \mid S, T(t : B) \\
\hline
S, F(t : A \sqcup B) & \quad S, F(t : A), F(t : B) \\
S, F_c(t : A \sqcup B) & \quad S, F_c(t : A), F_c(t : B)
\end{align*}
\]

\[
\begin{align*}
S, T(t : (A \sqcup B) \rightarrow C) & \quad S, T(t : A \rightarrow C), T(t : B \rightarrow C) \\
\hline
S, F(t : A \rightarrow B) & \quad S_p, T(t : A), F_c(t : B)
\end{align*}
\]
Relevant rules of \mathcal{T}

$$\frac{S, T(t : A \sqcup B)}{S, T(t : A) \mid S, T(t : B)}^{T\sqcup} \quad \frac{S, F(t : A \sqcup B)}{S, F(t : A), F(t : B)}^{F\sqcup} \quad \frac{S, F_c(t : A \sqcup B)}{S, F_c(t : A), F_c(t : B)}^{F_c\sqcup}$$

$$\quad \frac{S, T(t : (A \sqcup B) \rightarrow C)}{S, T(t : A \rightarrow C), T(t : B \rightarrow C)}^{T\rightarrow\Box} \quad \ldots \quad \frac{S, F_c(t : A \rightarrow B)}{S_p, T(t : A), F_c(t : B)}^{F_c\rightarrow}$$

$$\quad \frac{S, T(t : \forall R.A), T((t,s) : R)}{S, T((t,s) : R), T(s : A), T(t : \forall R.A)}^{T\forall}$$

$$\quad \frac{S, F(t : \forall R.A)}{S_p, T((t,p) : R), F(p : A)}^{F\forall^*} \quad \frac{S, F_c(t : \forall R.A)}{S_p, T((t,p) : R), F_c(p : A)}^{F_c\forall^*}$$
Properties of \mathcal{T}

Properties

It can be used to check **classic problems** on DLs: Concept validity, Subsumption, Instance checking
Properties of \mathcal{T}

Properties

It can be used to check classic problems on DLs: Concept validity, Subsumption, Instance checking

Disjunction property

If $A \sqcup B \in \mathcal{KALC}^\infty$, then either $A \in \mathcal{KALC}^\infty$ or $B \in \mathcal{KALC}^\infty$

Kur proof

We can exhibit a validity proof for generic instances of Kur

\rightarrow **Essential rule $F_c \forall$**: directly corresponds to condition on final states
About Finite Model Property

- if we omit condition on states, we obtain Int. Kripke semantics for \mathcal{ALC} [de Paiva, 2005, Odintsov and Wansing, 2003]
- this version has an infinite countermodel for $\text{Kur} \Rightarrow$ no FMP! since Kur is still valid in every finite model
- Still, we have no proof of FMP in $\mathcal{KALC}\infty$...
if we omit condition on states, we obtain Int. Kripke semantics for \(\mathcal{ALC} \) [de Paiva, 2005, Odintsov and Wansing, 2003]

- this version has an infinite countermodel for \(\text{Kur} \) \(\rightarrow \) no FMP!
 since \(\text{Kur} \) is still valid in every finite model

Still, we have no proof of FMP in \(\mathcal{KALC}^\infty \) ...

\[\rightarrow \text{Search for a different Kripke semantics allowing a decidable tableaux procedure...} \]
Outline

1. Introduction
2. $BCDL$: information terms semantics for ALC
3. $KALC^\infty$: Kripke-style semantics for ALC
4. $KALC$: decidable Kripke-style interpretation for ALC
5. Application directions
KALC: decidable Kripke-style interpretation for \(\mathcal{ALC} \)

KALC [Bozzato et al., 2010, Bozzato, 2011]

- Kripke-style semantics for \(\mathcal{ALC} \)
- Tableaux calculus \(\mathcal{T}_K \) and proof search algorithm

Features:
- Kripke semantics for dynamic and incomplete knowledge
- Constructive reading of reasoning problems
- Reasoning problems solvable by proof search algorithm
\mathcal{KALC} Kripke semantics

\mathcal{KALC}-model $\mathcal{K} = \langle P, \leq, \rho, \iota \rangle$

- (P, \leq) is a **finite** poset with root ρ;
- $\iota(\alpha) = (D^\alpha, \cdot^\alpha)$ such that, for every $\alpha, \beta \in P$ with $\alpha \leq \beta$:
 1. $D^\alpha \subseteq D^\beta$;
 2. for every $c \in \text{NI}$, $c^\alpha = c^\beta$;
 3. for every $A \in \text{NC}$, $A^\alpha \subseteq A^\beta$;
 4. for every $R \in \text{NR}$, $R^\alpha \subseteq R^\beta$.

Notes

Forcing relation definition does not change.

\mathcal{K} is valid also in every \mathcal{KALC}-model.

Syntax:

- limitations on formula definition

(Also, we only consider acyclic TBoxes)
KALC Kripke semantics

KALC-model $\mathcal{K} = \langle P, \leq, \rho, \iota \rangle$

- (P, \leq) is a **finite** poset with root ρ;
- $\iota(\alpha) = (D^\alpha, \cdot^\alpha)$ such that, for every $\alpha, \beta \in P$ with $\alpha \leq \beta$:
 1. $D^\alpha \subseteq D^\beta$;
 2. for every $c \in NI$, $c^\alpha = c^\beta$;
 3. for every $A \in NC$, $A^\alpha \subseteq A^\beta$;
 4. for every $R \in NR$, $R^\alpha \subseteq R^\beta$.

Notes

- **Forcing relation** definition does not change
- **Kur** is valid also in every \mathcal{K}-\cal{ALC}-model
- **Syntax**: limitations on formula definition
 $$K ::= (s, t) : R \mid t : C \mid C \sqsubseteq D$$
 (Also, we only consider acyclic TBoxes)
Auditing example

Idea
- Kripke semantics can represent **partial** and **evolving** knowledge
- Example application domain: **auditing**

Auditing example [Mendler and Scheele, 2010]

Problem domain:
There are some companies, some of which may be insolvent

An inference problem:
Is a given company credit worthy? (Instance checking)
Auditing example: classical reasoning

Let us consider the following ABox \(A \):

\[
\begin{align*}
 & a : \text{Company} & b : \text{Company} & c : \text{Company} & d : \text{Company} \\
 & (a,b) : \text{hasCustomer} & (a,c) : \text{hasCustomer} \\
 & (b,c) : \text{hasCustomer} & (c,d) : \text{hasCustomer} \\
 & b : \text{Insolvent} & d : \neg \text{Insolvent}
\end{align*}
\]

A generic model \(M \) of \(A \) has the form:

\[
\begin{array}{ccc}
 \text{I} & \quad & \neg \text{I} \\
 \text{b} & \rightarrow & \text{c} & \rightarrow & \text{d} \\
 \text{a} & \rightarrow & \text{c} & \rightarrow & \text{d}
\end{array}
\]

\[
\begin{array}{cc}
 \text{I} & : \text{Insolvent} \\
 \text{hasCustomer} & : \text{hasCustomer}
\end{array}
\]
A company x is **cw** *(Credit Worthy)* if:

$$I_x z \neg I_{cw y}$$

This clause corresponds to the formula

$$x : D \rightarrow cwD \equiv \exists hasCustomer.(Insolvent \sqcap \exists hasCustomer.\neg Insolvent)$$
Auditing example: classical reasoning

A company x is cw (Credit Worthy) if:

- x has an insolvent customer y

This clause corresponds to the formula

$$x : \neg \text{ICW}$$

$L. \text{Bozzato} \ (\text{DKM} - \text{FBK-Irst})$
A company x is cw (Credit Worthy) if:

- x has an insolvent customer y
- such that y can rely on at least one non-insolvent (i.e., solvent) customer z.

This clause corresponds to the formula
\[D \rightarrow CW \]
\[D \equiv \exists\ hasCustomer . (\neg Insolvent \land \exists\ hasCustomer . \neg Insolvent) \]
Auditing example: classical reasoning

A company x is cw (Credit Worthy) if:

- x has an insolvent customer y
 such that y can rely on at least one non-insolvent (i.e., solvent) customer z.

This clause corresponds to the formula

$$x : D \rightarrow \text{cw}$$

$$D \equiv \exists \text{hasCustomer.}(\text{Insolvent} \cap \exists \text{hasCustomer.}\neg \text{Insolvent})$$
Auditing example: classical reasoning

Let us add to the ABox \mathcal{A} the formula

$$a : D \rightarrow CW$$

asserting the above property for a
Auditing example: classical reasoning

Let us add to the ABox \mathcal{A} the formula

$$a : D \rightarrow CW$$

asserting the above property for a

Instance checking problem

Is the company a Credit Worthy?

$\mathcal{A} \models a : CW$?
Auditing example: classical reasoning

We show that in any model M of \mathcal{A} we can find y and z such that:

$$I y \neg I z$$
Auditing example: classical reasoning

We show that in any model \mathcal{M} of \mathcal{A} we can find y and z such that:

CASE 1: c is insolvent
Auditing example: classical reasoning

We show that in any model \mathcal{M} of \mathcal{A} we can find y and z such that:

CASE 1: c is insolvent

CASE 2: c is non-insolvent
Auditing example: classical reasoning

We show that in any model \mathcal{M} of \mathcal{A} we can find y and z such that:

CASE 1: c is insolvent

CASE 2: c is non-insolvent

$\mathcal{A} \models a: \exists \text{hasCustomer} . (\text{Insolvent} \cap \exists \text{hasCustomer}. \neg \text{Insolvent})$
Auditing example: classical reasoning

We show that in any model \mathcal{M} of \mathcal{A} we can find y and z such that:

CASE 1: c is insolvent

CASE 2: c is non-insolvent

$\mathcal{A} \models a : \exists \text{hasCustomer}.(\text{Insolvent} \land \exists \text{hasCustomer}. \neg \text{Insolvent})$

- $\mathcal{A} \models a : D$
- $\mathcal{A} \models a : D \rightarrow \text{CW}$ (since it belongs to \mathcal{A})
- We conclude that: $\mathcal{A} \models a : \text{CW}$
We know that a is cw, but we do not know why $\rightarrow \text{ALC}$ does not support constructive reasoning.

ALC models cannot represent partial knowledge as:

c is neither Insolvent nor $\neg \text{Insolvent}$.
Auditing example: classical reasoning

Note

- We know that a is CW, but we do not know why.
 \Rightarrow ALC does not support constructive reasoning.

- ALC models can not represent partial knowledge as:
 c is neither Insolvent nor \negInsolvent.

\Rightarrow We can represent partial and evolving knowledge, by Kripke semantics of $KALC$.

$L. Bozzato$ (DKM - FBK-Irst)
Auditing example: constructive reasoning

\[a: \text{Company} \quad b: \text{Company} \quad c: \text{Company} \quad d: \text{Company} \]
\[(a, b): \text{hasCustomer} \quad (a, c): \text{hasCustomer} \]
\[(b, c): \text{hasCustomer} \quad (c, d): \text{hasCustomer} \]
\[b: \text{Insolvent} \quad d: \neg \text{Insolvent} \quad a: D \rightarrow \text{CW} \]

Let us consider the \mathcal{KALC}-model K of \mathcal{A}:
The final worlds ϕ_1 and ϕ_2 are two states of complete knowledge:

$\phi_1 \models \neg c : \neg \text{Insolvent}$
$\phi_2 \models c : \text{Insolvent}$

Instead, in ρ we have partial knowledge about c:

$\rho \not\models c : \text{Insolvent}$
$\rho \not\models \neg c : \neg \text{Insolvent}$
Auditing example: constructive reasoning

- We have that:

\[\rho \models c: \text{Insolvent} \quad \square \neg \text{Insolvent} \]

and thus:

\[\mathcal{A} \not\models c: \text{Insolvent} \quad \square \neg \text{Insolvent} \]

- In \mathcal{KALC} we are not allowed to prove that a is CW

From \mathcal{A}, we can not find insolvent y and solvent z in the definition of CW.
Tableau calculus \mathcal{T}_K

To decide \kaldc-consequence relation \models^k we introduce the tableau calculus \mathcal{T}_K

Tableau calculus \mathcal{T}_K

- Refutation calculus on signed formulas
- Signed formulas T, F, T_s with:
 - $T_s(H)$: H will be true from next states
- Realizability relation $K, \alpha \triangleright W$: evaluation of signed formulas in α
 - $K, \alpha \triangleright T_s(H)$ iff $\alpha < \beta$ implies $\beta \models \neg H$

Theorem

Let \mathcal{F} be a set of formulas and $q \in \mathbb{NI}$ not occurring in \mathcal{F}.

- $\mathcal{F} \models^k c : C$ iff $T(\mathcal{F}) \cup \{ F(c : C) \}$ is not realizable.
- $\mathcal{F} \models H$ iff $T(\mathcal{F}) \cup \{ T_s(c : \bot), F(H) \}$ is not realizable.
Tableau calculus $\mathcal{T}_\mathcal{K}$: relevant rules

- $\Delta, T(c : C \sqcup D) \quad T\sqcup$
 \[\Delta, T(c : C) \mid \Delta, T(c : D) \]

- $\Delta, F(c : C \sqcup D) \quad F\sqcup$
 \[\Delta, F(c : C), F(c : D) \]

- $\Delta, F(c : C \rightarrow D) \quad F\rightarrow$
 \[\Delta, T(c : C), F(c : D) \mid \Delta_s, T(c : C), F(c : D) \]

- $\Delta, T(c : C \rightarrow D) \quad T\rightarrow$
 \[\Delta, T(c : D) \mid \Delta, F(c : C), T_s(c : D) \mid \Delta_s, F(c : C), T_s(c : D) \]

- $\Delta, T(c : A), T(A \sqsubseteq C) \quad T\sqsubseteq$
 \[\Delta, T(c : A), T(A \sqsubseteq C) \]

- $\Delta, T(c : \exists R.C) \quad T\exists$
 \[\Delta, T((c, q) : R), T(q : C) \]

- $\Delta, T((c, d) : R), T(c : \forall R.C) \quad T\forall$
 \[\Delta, T((c, d) : R), T(c : \forall R.C), T(d : C) \]

- $\Delta_s = \{ T(H) \mid T(H) \in \Delta \} \cup \{ T(H) \mid T_s(H) \in \Delta \}$
Tableau calculus \mathcal{T}_K: main theorem

Theorem (decidability)

Let Δ be a set of signed formulas:

- **Completeness**: Δ is realizable iff is not provable in \mathcal{T}_K.
- **Termination**: provability of Δ in \mathcal{T}_K can be decided in finite time.
Tableau calculus \mathcal{T}_K: main theorem

Theorem (decidability)

Let Δ be a set of signed formulas:

- **Completeness**: Δ is realizable iff is not provable in \mathcal{T}_K.
- **Termination**: provability of Δ in \mathcal{T}_K can be decided in finite time.

Algorithm

- **Input**: Δ
- **Output**:
 - Closed proof table for Δ
 - Or \mathcal{KALC}-model K such that $K, \rho \models \Delta$

Idea:

- Build a countermodel for Δ by graph expansion
 (build a graph for each world of the model)
- If all attempts fail, we get a closed tableau for Δ
Tableau calculus \mathcal{T}_K: algorithm

REAL(Δ)

\[\mathcal{G}_\Delta = \langle N_\Delta, E_\Delta, PF_\Delta, SF_\Delta, TB, DF_\Delta \rangle; \]

if (CONS(\mathcal{G}_Δ) == "inconsistent") then return "not realizable";
else return "realizable";

CONS(\mathcal{G})

while (exp-rules can be applied) and (PF clash-free) do begin
 pick $W \in (\mathcal{G})$;
 $\mathcal{G} = \text{exp-rules}(W, \mathcal{G})$;
end

if (PF contains a clash) then return "inconsistent";

while (succ-rules can be applied) do begin
 pick $W \in (\mathcal{G})$;
 $\mathcal{G}' = \text{succ-rules}(W, \mathcal{G})$;
 if (CONS(\mathcal{G}') == "inconsistent") then return "inconsistent";
end
return "consistent";
Tableau calculus \mathcal{T}_K: complexity

PSPACE-hardness

- Straightforward translation between \mathcal{KALC} and Int
- [Statman, 1979]: Int decision problem is PSPACE-complete

\Rightarrow \mathcal{KALC} realizability is PSPACE-hard
Tableau calculus \mathcal{T}_K: complexity

PSpace-hardness
- Straightforward translation between \mathcal{KALC} and Int
- [Statman, 1979]: Int decision problem is PSPACE-complete
 \rightarrow \mathcal{KALC} realizability is PSPACE-hard

PSpace-completeness?
- Conjecture: for TBox $= \emptyset$, \mathcal{KALC} is in PSPACE
Tableau calculus \mathcal{T}_K: complexity

PSPACE-hardness
- Straightforward translation between \mathcal{KALC} and Int
- [Statman, 1979]: Int decision problem is PSPACE-complete

$\Rightarrow \mathcal{KALC}$ realizability is PSPACE-hard

PSPACE-completeness?
- **Conjecture:** for TBox $= \emptyset$, \mathcal{KALC} is in PSPACE
- **Idea:** trace technique
 - Countermodel can be exponential w.r.t. starting formulas...
 - ...but paths are independent and polynomial in size of input

\Rightarrow Explore countermodel one path at a time requires space polynomial in size of input
Tableau calculus \mathcal{T}_K: complexity

PSPACE-hardness
- Straightforward translation between \mathcal{KALC} and Int
- [Statman, 1979]: Int decision problem is PSPACE-complete
 $\Rightarrow \mathcal{KALC}$ realizability is PSPACE-hard

PSPACE-completeness?
- Conjecture: for TBox $= \emptyset$, \mathcal{KALC} is in PSPACE
- Idea: trace technique
 - Countermodel can be exponential w.r.t. starting formulas...
 - ...but paths are independent and polynomial in size of input
 \Rightarrow Explore countermodel one path at a time requires space polynomial in size of input
- Still no formal proof for completeness of this strategy!
KALC relations with KALC

- **KALC** models are KALC models with a **possibly infinite poset**
- **Relations:**
 - \(KALC^\infty \subseteq KALC \), since every KALC model is a \(KALC^\infty \) model
 - \(KALC \subseteq KALC^\infty ? \)
 every \(KALC^\infty \) model has a corresponding KALC model?
Outline

1. Introduction
2. $BCDL$: information terms semantics for ALC
3. $KALC^\infty$: Kripke-style semantics for ALC
4. $KALC$: decidable Kripke-style interpretation for ALC
5. Application directions
Application directions

Starting points:

- **$BCDL$**: information terms semantics

- **$KALC$**: tableau procedure and Kripke semantics
Application directions

Starting points:

- **BCDL**: information terms semantics

- **KALC**: tableau procedure and Kripke semantics
Application directions

Starting points:

- **BCDL**: information terms semantics
 - Computational interpretation of proofs
 - Classical reading of descriptions
 - Natural notion of state
- **KALC**: tableau procedure and Kripke semantics

L. Bozzato (DKM - FBK-Irst)
Application directions

Starting points:

- **BCDL**: information terms semantics
 - Computational interpretation of proofs
 - Classical reading of descriptions
 - Natural notion of state

- **KALC**: tableau procedure and Kripke semantics
 - Comparison to tableau procedures for classical DLs
 - Basis for implementation
 - Representation of partial and dynamic knowledge
Application directions

Starting points:

- **BCDL**: information terms semantics
 - Computational interpretation of proofs
 - Classical reading of descriptions
 - Natural notion of state

- **KALC**: tableau procedure and Kripke semantics
 - Comparison to tableau procedures for classical DLs
 - Basis for implementation
 - Representation of partial and dynamic knowledge

Some current directions

- State description and action formalisms
- Semantic web service compositions and synthesis
App. directions: IT and states

IT and states

- Information terms encode a natural notion of state
- Used in [Ferrari et al., 2008] to represent system snapshots

→ Action formalism for \mathcal{ALC} [Bozzato et al., 2009b]

An action formalism based on IT semantics of \mathcal{BCDL}
App. directions: IT and states

IT and states
- Information terms encode a natural notion of state
- Used in [Ferrari et al., 2008] to represent system snapshots

Action formalism for \mathcal{ALC} [Bozzato et al., 2009b]
An action formalism based on IT semantics of \mathcal{BCDL}

System description and states
- **Theory T:** description of a system
 - **TBox:** system constraints (general properties)
 - **ABox:** current state of the system
- **State:** $\alpha \in IT(T)$
- **State consistency:** if there is a model \mathcal{M} s.t. $\mathcal{M} \models \langle \alpha \rangle T$
App. directions: action language

- **Action:** \(P \Rightarrow Q \)

Informal reading
- If the **preconditions** \(P \) hold in a state \(\alpha \), the action can be applied.
- In the resulting state the **postconditions** \(Q \) must hold.

Information content \(IC(\langle \alpha \rangle T) \):
minimal set of atomic formulas encoding info. from \(\langle \alpha \rangle T \)
- **Applicability:** an action is **active** if \(P \subseteq IC(\langle \alpha \rangle T) \)
- **Action output** \(Out(\alpha) \): update \(IC(\langle \alpha \rangle T) \) with \(Q \)

GENIT
- Algorithm to build up a state (IT) for a system, given an action output
- It can be used to **trace reasons** for inconsistency
App. directions: web services composition

Service composition in \(BCDL \) [Bozzato and Ferrari, 2010]

- **Calculus** for definition of Semantic Web Services compositions
- Related to **program synthesis** in constr. logics [Miglioli et al., 1986]
- Services as combined functions "computing" information terms
Service composition in *BCDL* [Bozzato and Ferrari, 2010]

- **Calculus** for definition of Semantic Web Services compositions
- Related to *program synthesis* in constr. logics [Miglioli et al., 1986]
- Services as combined functions "computing" information terms

Composition calculus \(SC \)

\[
\begin{align*}
\Pi_1 : s_1(x) :: P_1 & \Rightarrow Q_1 \\
\vdots \\
\Pi_n : s_n(x) :: P_n & \Rightarrow Q_n
\end{align*}
\]

- **Applicability conditions (AC):** constraints for correctness of rule application
- **Computational interpretation (CI):** computational reading of logical rule
App. directions: web services composition

Service composition in $BCDL$ [Bozzato and Ferrari, 2010]

- Calculus for definition of Semantic Web Services compositions
- Related to program synthesis in constr. logics [Miglioli et al., 1986]
- Services as combined functions "computing" information terms

Composition calculus SC

\[
\begin{align*}
\text{s}(x) &: P \Rightarrow Q \\
\Pi_1 : \text{s}_1(x) &: P_1 \Rightarrow Q_1 \\
\vdots \\
\Pi_n : \text{s}_n(x) &: P_n \Rightarrow Q_n
\end{align*}
\]

- Applicability conditions (AC): constraints for correctness of rule application
- Computational interpretation (CI): computational reading of logical rule

Result

If a composition meets the ACs of its rules, then its computational interpretation is sound
Thank you for listening

Directions and Applications for Constructive Semantics in Description Logics

Loris Bozzato
bozzato@fbk.eu
https://dkm.fbk.eu/index.php/Loris_Bozzato

DKM - Data and Knowledge Management Research Unit,
FBK-Irst, Fondazione Bruno Kessler - Trento, Italy
Kripke semantics and tableau procedures for constructive description logics.

Composition of Semantic Web Services in a Constructive Description Logic.

A constructive semantics for \mathcal{ALC}.

A decidable constructive description logic.
To appear.

A note on constructive semantics for description logics.
Accepted at CILC09 - 24-esimo Convegno Italiano di Logica Computazionale.

References III

A compatible approach to temporal description logics.
In [Haarslev et al., 2010].

Paraconsistent description logics revisited.
In [Haarslev et al., 2010], pages 197–208.

Negations in description logic – contraries, contradictories, and subcontraries.

Towards a type system for semantic streams.

Towards Constructive DL for Abstraction and Refinement.

