Towards More Effective Tableaux Reasoning for CKR

1Loris Bozzato \hspace{1cm} 2Martin Homola \hspace{1cm} 1Luciano Serafini

1DKM, Fondazione Bruno Kessler – Trento, Italy
2Comenius University – Bratislava, Slovakia

25th Int. Workshop on Description Logics (DL 2012)
June 7-10, 2012 - Roma, Italy
1. Introduction
2. Contextualized Knowledge Repositories
3. Tableaux Algorithm
4. Algorithm Optimization
5. Conclusions
Motivation

Need for context in Semantic Web

- Most of Semantic Web data holds in specific **contextual space** (time, location, topic...)
- **No explicit support** for reasoning with context sensitive knowledge in SW (Often handcrafted in implementation)
- Need for well-defined theory of contexts
Motivation

Need for context in Semantic Web

- Most of Semantic Web data holds in specific **contextual space** (time, location, topic...)
- **No explicit support** for reasoning with context sensitive knowledge in SW (Often handcrafted in implementation)

 ➔ Need for well-defined theory of contexts

Contextualized Knowledge repository (CKR)

- DL based framework for representation and reasoning with contextual knowledge in the Semantic Web

 - **Contextual theory**: based on formal AI theories of context

Other DL contextual frameworks:

[Bao et al., 2010, Klarman and Gutiérrez-Basulto, 2011, Straccia et al., 2010].
“Context as a Box” paradigm

Idea [Benerecetti et al., 2000]

- A context is a logical theory...
- ...associated to a region in a contextual space
“Context as a Box” paradigm

Idea [Benerecetti et al., 2000]

- A context is a logical theory...
- ...associated to a region in a contextual space

\[
C = \text{HostTeam} \sqsubseteq \text{QualifiedTeam}
\]

\[
\ldots
\]

\[
\text{Winner(team_spain)}
\]

\[
\text{RunnerUp(team_holland)}
\]

\[
\ldots
\]

\[
\text{playsFor(buffon, team_italy)}
\]

\[
\text{playsFor(cannavaro, team_italy)}
\]

\[
\ldots
\]
“Context as a Box” paradigm

Idea [Benerecetti et al., 2000]

- A context is a logical theory...
- ...associated to a region in a contextual space

\[
C = \begin{cases}
\text{HostTeam} \sqsubseteq \text{QualifiedTeam} \\
\quad \ldots \\
\quad \text{Winner(team_spain)} \\
\quad \text{RunnerUp(team_holland)} \\
\quad \ldots \\
\quad \text{playsFor(buffon, team_italy)} \\
\quad \text{playsFor(cannavaro, team_italy)} \\
\quad \ldots
\end{cases}
\]

\[
\text{time}(C, 2010), \ \text{location}(C, \text{South_Africa}), \ \text{topic}(C, \text{FIFA_WC})
\]
“Context as a Box” paradigm

Idea [Benerecetti et al., 2000]

- A context is a **logical theory**...
- ...associated to a region in a **contextual space**

![Diagram of context as a box with dimensions for space, time, and topic. The box contains information about the FIFA World Cup 2010 in South Africa with winners and runners-up.]
Contextual dimensions [Lenat, 1998]

- time, location, topic, … are dimensions
- Our logical framework supports n dimensions
- Each dimension A ordered w.r.t. coverage relation \prec_A
Dimensions and coverage

Contextual dimensions [Lenat, 1998]
- time, location, topic, ... are dimensions
- Our logical framework supports n dimensions
- Each dimension A ordered w.r.t. coverage relation \prec_A

Context coverage
- Narrower / broader context relation defined from dimension ordering
- This relation defines the covering structure of contexts
Hierarchy of contexts

< 2010, World, Sports >

< 2010, World, Football >

< 2010, S.Africa, FIFA_WC >

< 2010, Italy, National_League >
Reference to other contexts

- **Locality of knowledge**
 - Concept C and role R symbols have independent meaning in different contexts

- **Qualified symbols**: refer to entities from other contexts
 - For every concept C and role R
 - and every dimensional vector d
 - we introduce qualified symbols C_d and R_d

$$C = \text{time}(C, 2010), \text{location}(C, \text{South_Africa}), \text{topic}(C, \text{FIFA_WC})$$

\[
\ldots \\
\text{playsFor}(\text{buffon, team_italy}) \\
\text{playsFor}_{\text{World, Italian_league}}(\text{buffon, juventus}) \\
\text{playsFor}(\text{alcaraz, team_paraguay}) \\
\text{playsFor}_{\text{World, English_league}}(\text{alcaraz, wigan}) \\
\ldots
\]
Outline

1. Introduction
2. Contextualized Knowledge Repositories
3. Tableaux Algorithm
4. Algorithm Optimization
5. Conclusions
Meta and Object vocabulary

Meta vocabulary \(\Gamma \)

- **dimensions** \(A \in A \)
 - roles: topic, time, location, . . .
- **dimensional values** \(a \in D_A \)
 - individuals: FIFAWC, football, . . .
- **coverage relation** \(A \)
 - roles: FIFAWC \(\prec_{\text{topic}} \) football, . . .
Meta and Object vocabulary

Meta vocabulary Γ

- **dimensions** $A \in A$
 - roles: topic, time, location, . . .
- **dimensional values** $a \in D_A$
 - individuals: FIFAWC, football, . . .
- **coverage relation** \prec_A
 - roles: FIFAWC \prec_{topic} football, . . .

Dimensional vectors $d = \{d_1, \ldots, d_m\}$ with $d_i \in A_i$

- e.g. $\{2010, \text{world, football}\}$
- Partial or full
- Operations: $d \prec e, d + e$
Meta vocabulary Γ

- **dimensions** $A \in A$
 - roles: topic, time, location, ...
- **dimensional values** $a \in D_A$
 - individuals: FIFAWC, football, ...
- **coverage relation** \prec_A
 - roles: FIFAWC \prec_topic football, ...

Dimensional vectors $\mathbf{d} = \{d_1, \ldots, d_m\}$ with $d_i \in A_i$

- e.g. $\{2010, \text{world}, \text{football}\}$
- Partial or full
- Operations: $\mathbf{d} \prec \mathbf{e}, \mathbf{d} + \mathbf{e}$

Object vocabulary Σ

DL vocabulary closed by **qualification** on concepts (C_d) and roles (R_d)
CKR definition

- **CKR knowledge base** $\mathcal{K} = \langle \mathcal{M}, \mathcal{C} \rangle$ on (Γ, Σ)

- **\mathcal{C}**: finite collection of contexts C_d
 - $\text{dim}(C_d) = d$, a full dimensional vector of Γ
 - $K(C_d)$, an ALC KB over Σ

- **Meta knowledge** \mathcal{M}: DL KB with meta assertions
 - Dimensional values: $D_A = \{d, e, \ldots\}$
 - Dimensional coverage: $d \prec_A e$
 - Context dimensions relations: $A(C, d)$
CKR semantics

Interpretation for CKR knowledge bases:
- One DL interpretation for each context
- Semantic conditions for knowledge compatibility

Partial DL interpretation

DL interpretation \(\mathcal{I} = \langle \Delta^\mathcal{I}, .^\mathcal{I} \rangle \) in which:
- \(\Delta^\mathcal{I} \) can be empty
- \(.^\mathcal{I} \) can be partially defined on individuals
CKR Model

Set of partial interpretations: \(\mathcal{I} = \{ \mathcal{I}_d \}_{d \in \mathcal{D}} \)

Rules for propagation and locality of knowledge:

1. \((\top_d)^{\mathcal{I}_f} \subseteq (\top_e)^{\mathcal{I}_f} \) if \(d \prec e \) \hspace{1cm} (domain containment)
2. \((A_f)^{\mathcal{I}_d} \subseteq (\top_f)^{\mathcal{I}_d} \) \hspace{1cm} (local interpretation 1)
3. \((R_f)^{\mathcal{I}_d} \subseteq (\top_f)^{\mathcal{I}_d} \times (\top_f)^{\mathcal{I}_d} \) \hspace{1cm} (local interpretation 2)
4. \(a^{\mathcal{I}_e} = a^{\mathcal{I}_d} \) if \(a^{\mathcal{I}_e} \in \Delta_d \) and \(d \prec e \) or \(d \succ e \) \hspace{1cm} (global names)
5. \((X_{d_B})^{\mathcal{I}_e} = (X_{d_B} + e)^{\mathcal{I}_e} \) \hspace{1cm} (partial qualification)
6. \((X_d)^{\mathcal{I}_e} = (X_d)^{\mathcal{I}_d} \) if \(d \prec e \) \hspace{1cm} (restricted interpretation 1)
7. \((A_f)^{\mathcal{I}_d} = (A_f)^{\mathcal{I}_e} \cap \Delta_d \) if \(d \prec e \) \hspace{1cm} (restricted interpretation 2)
8. \((R_f)^{\mathcal{I}_d} = (R_f)^{\mathcal{I}_e} \cap (\Delta_d \times \Delta_d) \) if \(d \prec e \) \hspace{1cm} (restricted interpretation 3)
9. \(\mathcal{I}_d \models K(C_d) \)
CKR Model \mathcal{I}

- **Set of partial interpretations:** $\mathcal{I} = \{\mathcal{I}_d\}_{d \in \mathbb{D}}$

- **Rules for propagation and locality of knowledge:**
 1. $(\top_d)^{\mathcal{I}_f} \subseteq (\top_e)^{\mathcal{I}_f}$ if $d \prec e$ (domain containment)
 2. $(A_f)^{\mathcal{I}_d} \subseteq (\top_f)^{\mathcal{I}_d}$ (local interpretation 1)
 3. $(R_f)^{\mathcal{I}_d} \subseteq (\top_f)^{\mathcal{I}_d} \times (\top_f)^{\mathcal{I}_d}$ (local interpretation 2)
 4. $a^{\mathcal{I}_e} = a^{\mathcal{I}_d}$ if $a^{\mathcal{I}_e} \in \Delta_d$ and $d \prec e$ or $d \succ e$ (global names)
 5. $(X_{d_B})^{\mathcal{I}_e} = (X_{d_B + e})^{\mathcal{I}_e}$ (partial qualification)
 6. $(X_d)^{\mathcal{I}_e} = (X_d)^{\mathcal{I}_d}$ if $d \prec e$ (restricted interpretation 1)
 7. $(A_f)^{\mathcal{I}_d} = (A_f)^{\mathcal{I}_e} \cap \Delta_d$ if $d \prec e$ (restricted interpretation 2)
 8. $(R_f)^{\mathcal{I}_d} = (R_f)^{\mathcal{I}_e} \cap (\Delta_d \times \Delta_d)$ if $d \prec e$ (restricted interpretation 3)
 9. $\mathcal{I}_d \models K(C_d)$
d-satisfiability

C is d-satisfiable w.r.t. \(\mathcal{K} \) if there exists \(\mathcal{I} = \{ \mathcal{I}_e \}_{e \in D} \) of \(\mathcal{K} \) s.t. \(C^{\mathcal{I}_d} \neq \emptyset \).

d-entailment

\(\alpha \) is d-entailed by \(\mathcal{K} \) if for every model \(\mathcal{I} = \{ \mathcal{I}_e \}_{e \in D} \) of \(\mathcal{K} \), \(\mathcal{I}_d \models \alpha \).
Tableaux algorithm C_T

Tableaux algorithm C_T for \mathcal{ALC}-based CKR

- Decides \mathfrak{d}-satisfiability of concept C w.r.t. \mathcal{K}
- Extension of \mathcal{ALC} non-deterministic algorithm
- Single completion tree, but different labels for each context

Tableaux rules:

- local reasoning: usual \mathcal{ALC} rules
- knowledge propagation: new CKR rules
Completion tree

Completion tree:
Partial representation of a CKR model

- $T = \langle V, E, \mathcal{L} \rangle$ s.t. for each e:
 - nodes: $V_e \subseteq V$
 - edges: $E_e \subseteq E$ and $E_e \subseteq V_e \times V_e$
 - labels: $\mathcal{L} = \{ \mathcal{L}_e \}_{e \in \mathfrak{D}_T}$ with:
 - $\mathcal{L}_e(x)$ set of concepts for $x \in V_e$
 - $\mathcal{L}_e(\langle x, y \rangle)$ set of roles for $\langle x, y \rangle \in E_e$
Algorithm definition

Initialization: \(T := \langle V, E, L \rangle \)

- \(V_e := \{a^e | C(a) \in K(C_e)\} \cup \{a^e, b^e | R(a, b) \in K(C_e)\} \)
- \(E_e := \{\langle a^e, b^e \rangle | R(a, b) \in K(C_e)\} \)
- \(\mathcal{L}_e(a^e) := \{C | C(a) \in K(C_e)\} \)
- \(\mathcal{L}_e(\langle a^e, b^e \rangle) := \{R | R(a, b) \in K(C_e)\} \)
- \(V_d := V_d \cup \{s_0\}, \text{ with } s_0 \text{ new} \)
- \(\mathcal{L}_d(s_0) := \{C\} \)

Tableaux expansion:

- apply all rules exhaustively
- try to construct complete and clash-free c.tree

Note

- **Blocking:** equality blocking on all \(\mathcal{L}_e \) [Buchheit et al., 1993]
- **Merging:** \(M \)-rule merges ABox individuals with same meaning
Tableaux rules: \(\mathcal{ALC} \) local rules

<table>
<thead>
<tr>
<th>(\mathcal{L}_d(x) = {C_1 \sqcap C_2})</th>
<th>(\Box)</th>
<th>(\mathcal{L}_d(x) = {C_1 \sqcap C_2, C_1, C_2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{L}_d(x) = {C_1 \sqcup C_2})</td>
<td>(\top)</td>
<td>(\mathcal{L}_d(x) = {C_1 \sqcup C_2, C}) for (C \in {C_1, C_2})</td>
</tr>
<tr>
<td>(\bullet \mathcal{L}_d(x) = {\exists R.C})</td>
<td>(\exists)</td>
<td>(\bullet \mathcal{L}_d(x) = {\exists R.C})</td>
</tr>
<tr>
<td>(\bullet \mathcal{L}_d(x) = {\forall R.C}) (\mathcal{L}_d(<x,y>) = {R})</td>
<td>(\forall)</td>
<td>(\bullet \mathcal{L}_d(x) = {\forall R.C}) (\mathcal{L}_d(<x,y>) = {R})</td>
</tr>
<tr>
<td>(\mathcal{L}_d(x) = {\ldots}, {C \sqsubseteq D} \subseteq K(\mathcal{C}_d))</td>
<td>(\mathcal{T})</td>
<td>(\mathcal{L}_d(x) = {\text{nnf}(\neg C \sqcup D)})</td>
</tr>
</tbody>
</table>
Tableaux rules: CKR propagation rules

\[\begin{array}{c|c|c}
\text{d} & \Delta \uparrow & \Delta \downarrow \\
\hline
\text{x} & \bullet & \bullet \\
\text{L}_d(x) = \{ \top_d \} & \bullet & \bullet \\
\text{L}_e(x) = \{ A_f \} & \bullet & \bullet \\
\hline
\text{R} & \text{R} & \text{R} \\
\text{x} & \bullet & \bullet \\
\text{e} & \bullet & \bullet \\
\end{array} \]
Tableaux rules: CKR top and M-rules

<table>
<thead>
<tr>
<th>$\mathcal{L}_d(x) = {A_f}$</th>
<th>\top_A</th>
<th>$\mathcal{L}_d(x) = {A_f, \top_f}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bullet \mathcal{L}_d(x) = {\ldots}$</td>
<td>\top_R</td>
<td>$\bullet \mathcal{L}_d(x) = {\top_f}$</td>
</tr>
<tr>
<td>$\mathcal{L}_d(<x,y>) = {R_f}$</td>
<td></td>
<td>$\mathcal{L}_d(<x,y>) = {R_f}$</td>
</tr>
<tr>
<td>$\bullet \mathcal{L}_d(y) = {\ldots}$</td>
<td></td>
<td>$\bullet \mathcal{L}_d(y) = {\top_f}$</td>
</tr>
</tbody>
</table>

| $\mathcal{L}_d(x) = \{\ldots\}, e \preccurlyeq f$ | \subseteq | $\mathcal{L}_d(x) = \{\neg \top_e \cup \top_f\}, e \ll f$ |

<table>
<thead>
<tr>
<th>d</th>
<th>$\bullet a^h$</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bullet a^g$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
</tr>
<tr>
<td>$\bullet a$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d</th>
<th>$\bullet a$</th>
<th>e</th>
</tr>
</thead>
</table>
\[\mathcal{A} \models d : A_e \sqsubseteq B_f \]
Deduction example II

\[A \equiv C_f \]

\[\forall \mathcal{R} \models d : A_e \sqsubseteq B_f \]

\[s_0 : A_e \sqcap \neg B_f \]

\[C \sqsubseteq B \]
\(A \equiv C_f \)

\(C \sqsubseteq B \)

\(s_0 : A_e \sqcap \neg B_f, \quad A_e, \neg B_f \)

\(\sqcap \)-rule

\(\mathcal{K} \models d : A_e \sqsubseteq B_f \)
Deduction example IV

\[A \equiv C_f, \]
\[s_0 : A \]

\[C \sqsubseteq B \]

\[s_0 : A_e \sqcap \neg B_f, \]
\[A_e, \neg B_f \]

\[\Delta \uparrow, A\text{-rules} \]

\[\mathcal{H} \models d : A_e \sqsubseteq B_f \]
Deduction example V

\[A \equiv C_f, \]
\[s_0 : A, C_f \]

\[C \sqsubseteq B \]
\[s_0 : A_e \sqcap \neg B_f, \]
\[A_e, \neg B_f \]

\[\mathcal{T}, \sqcap\text{-rules} \]
\[\mathcal{R} \models d : A_e \sqsubseteq B_f \]
Deduction example VI

\[A \equiv C_f, \]
\[s_0 : A, C_f, T_f \]

\[C \sqsubseteq B, \]
\[s_0 : C \]

\[s_0 : A_e \sqcap \neg B_f, \]
\[A_e, \neg B_f \]

\[\top, \Delta \downarrow, A\text{-rules} \]

\[\mathcal{K} \models d : A_e \sqsubseteq B_f \]
\[
A \equiv C_f, \\
\mathcal{S}_0: A, C_f, \top_f
\]

\[
C \subseteq B, \\
\mathcal{S}_0: C, B
\]

\[
s_0: A_e \cap \lnot B_f, \\
A_e, \lnot B_f
\]

\[
\mathcal{I}, \sqcup\text{-rules} \\
\mathcal{K} \models d: A_e \subseteq B_f
\]
Deduction example VIII

\[A \equiv C_f, \]
\[s_0 : A, C_f, T_f, B_f \]

\[C \sqsubseteq B, \]
\[s_0 : C, B \]

\[s_0 : A_e \sqcap \neg B_f, \]
\[A_e, \neg B_f, B_f \]

A-rule

\[\mathcal{K} \models d : A_e \sqsubseteq B_f \]
Correctness and complexity

Correctness
Given CKR \mathcal{R}, $d \in D_\Gamma$, and concept C on input,
- C_T always terminates
- C is d-satisfiable w.r.t. $\mathcal{R} \iff C_T$ generates complete and clash-free c.tree.

Idea: construction of CKR model from / to completion tree

Complexity
Complexity of C_T is \text{NEXPTime} w.r.t. combined size of input.

Idea: by blocking, number of nodes limited by size of input \mathcal{R} and C
1. Introduction

2. Contextualized Knowledge Repositories

3. Tableaux Algorithm

4. Algorithm Optimization

5. Conclusions
Optimization 1: precomputation of metaknowledge

- Rules use metaknowledge by querying for $d \prec e$
- Constant number of dimensions k and contexts m
Optimization 1: precomputation of metaknowledge

- Rules use metaknowledge by querying for $d \prec e$
- Constant number of dimensions k and contexts m

Opt.1: precompute context structure

- Idea: $k \times m^2$ queries to compute $\mathcal{M} \models d \prec_A d'$
- Meta-level reasoning does not slow down object-level reasoning
Optimization 2: parallelization (sketch)

- Contexts divide KB in smaller units (mostly independent)
- Part of reasoning can be parallelized (one processor per context)
Optimization 2: parallelization (sketch)

- Contexts divide KB in smaller units (mostly independent)
- Part of reasoning can be parallelized (one processor per context)

Opt.2: parallelization (sketch)

- **Local (\exists, \exists...)** & **top rules**: apply locally by each processor
- **$\Delta\uparrow, \Delta\downarrow$**: detect locally, send message to target context, cache individuals
- **A, R-rule**: detect by cache, send message to target context
- **M-rule**: detect locally, send message to target context
Optimization 3: propagation limitation

- Propagation: augments number of messages and computation
- Should be limited (also for parallelization)
Optimization 3: propagation limitation

- Propagation: augments number of messages and computation
- Should be limited (also for parallelization)

Opt.3: propagation limitation

- Lazy unfolding for $T_A, T_R, T_\subseteq \rightarrow T^*_A, T^*_R, T^*_\subseteq$
- Avoids introduction of $\neg T_d \sqcup T_e$ by T_\subseteq

Note: C_T extended with $T^*_A, T^*_R, T^*_\subseteq$ is correct
Optimization 3: propagation limitation

\[\mathcal{L}_d(x) = \{A_e\}, \ e \preceq f \]

\[\mathcal{T}_A \]

\[\mathcal{L}_d(x) = \{A_e, \top_f\}, \ e \preceq f \]

\[\mathcal{L}_d(x) = \{\ldots\} \]
\[\mathcal{L}_d(<x,y>) = \{R_e\} \]
\[\mathcal{L}_d(y) = \{\ldots\} \]
\[e \preceq f \]

\[\mathcal{T}_R \]

\[\mathcal{L}_d(x) = \{\top_f\} \]
\[\mathcal{L}_d(<x,y>) = \{R_f\} \]
\[\mathcal{L}_d(y) = \{\top_f\} \]
\[e \preceq f \]

\[\mathcal{L}_d(x) = \{\neg\top_f\}, \ e \prec f \]

\[\mathcal{T}_\sqsubseteq \]

\[\mathcal{L}_d(x) = \{\neg\top_f, \neg\top_e\}, \ e \prec f \]
Conclusions

CKR: contextual layer for DL knowledge bases

C_T tableaux algorithm:
extension of NExpTime ALC algorithm with CKR rules

Optimizations:
- metaknowledge precomputation
- parallelization (sketch)
- propagation limitation

Reasoning: current and future directions

- ExpTime algorithm for ALC CKR (submitted)
- Parallel version of C_T
- Optimization of A, R-rules
- Extend to SROIQ-based CKR
Thank you for listening

Towards More Effective Tableaux Reasoning for CKR

Loris Bozzato, Martin Homola, Luciano Serafini

https://dkm.fbk.eu/

DKM - Data and Knowledge Management Research Unit,
FBK-Irst, Fondazione Bruno Kessler - Trento, Italy

