Interlinking Unstructured and Structured Knowledge in an Integrated Framework

Marco Rospocher

Fondazione Bruno Kessler,
Data and Knowledge Management Unit
Trento, Italy
rospocher@fbk.eu :: https://dkm.fbk.eu/rospocher

joint work with:
Francesco Corcoglioniti, Roldano Cattoni,
Bernardo Magnini, Luciano Serafini
Introduction

• The rate of growth of digital data and information is nowadays continuously increasing
 - large amount of data and information is available in \textit{structured} form
 • e.g., the Linked Data Initiative
 - a huge amount of content (>90\% of the digital resources) is still available in an \textit{unstructured} form
 • e.g., textual document, web pages, and multimedia material
Introduction

• Different format, but very similar content
 - they speak about entities of the world (e.g., PER, ORG, GPE/LOC, EVN), their properties, and relations among them
 - may contain coinciding, contradictory, and complementary facts about them

• Focusing on the content distributed in only one of these two forms may not be appropriate, especially in applications that require complete knowledge
 - e.g., decision making, question answering

• Frameworks enabling the seamless integration and linking of knowledge coming both from structured and unstructured content are still lacking.
Our Contribution
The Knowledge Store

• A framework enabling to jointly store, manage, retrieve, and semantically query, both unstructured and structured content

• A bridge between Natural Language Processing and Semantic Web
Our Contribution

The Knowledge Store
A United Nations assessment team was dispatched to the province after two quakes, measuring 7.6 and 7.4, struck west of Manokwari Jan. 4. At least five people were killed, 250 others injured and more than 800 homes destroyed by those temblors, according to the UN.
Our Contribution

The Knowledge Store

Resource Layer

Entity Layer

Indonesia Hit By Earthquake

A United Nations assessment team was dispatched to the province after two quakes, measuring 7.6 and 7.4, struck west of Manokwari Jan. 4. At least five people were killed, 250 others injured and more than 800 homes destroyed by those temblors, according to the UN.
Indonesia Hit By Earthquake

A United Nations assessment team was dispatched to the province after two quakes, measuring 7.6 and 7.4, struck west of Manokwari Jan. 4. At least five people were killed, 250 others injured and more than 800 homes destroyed by those temblors, according to the UN.
Our Contribution
The Knowledge Store

- It can play a **central role** in applications/tasks that deals with both structured and structured knowledge
 - it enables effective **decision making** support: possibility to perform **mixed queries**
 - “retrieve all the documents mentioning that person Barack Obama participated to a sport event”
 - it favors the implementation and evaluation of tools improving the performance of **coreference resolution** tasks
 - it provides an ideal scenario for developing, training, and evaluating **ontology population** techniques
 - e.g. knowledge fusion, knowledge crystallization
Outline

• A concrete scenario: NewsReader
• The Knowledge Store
 - Data Model
 - Interfaces
 - Internal Architecture
• Preliminary Version
• Conclusions
A concrete scenario

- EU ICT FP7 project [Jan 2013 - Dec 2015]
 - Partners: Netherlands (VU, LexisNexis, Synerscope), Spain (EHU), UK (ScraperWiki) and Italy (FBK)
 - http://www.newsreader-project.eu

- Automatically process massive streams of daily news from thousands of sources in 4 different languages to:
 - extract **events** (what happened, where, when and who is involved), and relations among them
 - organise and visualise events as **narrative stories**, combining new events with past events and background information, to provide more efficient access / decision support
Challenging Requirements

• To process document resources detecting mentions of events, event participants (e.g., PER, ORG), locations, time expressions, and so on
• To link mentions with entities, co-referring mentions of the same entity
• To complete entity descriptions, complementing extracted mention information with available structured knowledge (e.g., DBPedia)
• To interrelate entities (e.g., events and their participants) to support the construction of narrative stories
• To reason over events to check consistency, completeness, factuality and relevance
• To store all this huge quantity of information in a scalable way enabling efficient retrieval and intelligent queries
• To effectively offer narrative stories to decision makers
Role of the KS
Role of the KS
Role of the KS

- Resource Layer
- Mention Layer
- Entity Layer

Data Sources

Unstructured content populators

store news

Knowledge Store

Unstructured content populators

store entities and statements

Structured content populators

Data Sources

Interlinking Unstructured and Structured Knowledge in an Integrated Framework - Corcoglioniti et al.
Role of the KS

- **Resource processors**
 - tokenization; lemmatization; POS tagging; WSD; dependency parsing; keyphrase extraction ...

- **Unstructured content populators**
 - store news

- **Structured content populators**
 - store entities and statements

- **Data Sources**
 - read resources
 - write annotations

Knowledge Store

Resource Layer

Mention Layer

Entity Layer
Role of the KS

- **Resource processors**
 - Tokenization; lemmatization; POS tagging; WSD; dependency parsing; keyphrase extraction ...
 - Read resources
 - Write annotations & mentions

- **Mention processors**
 - Named entity & event recognition; semantic role labelling; relation extraction; wikification ...
 - Read annotations & mentions
 - Write mentions

- **Unstructured content populators**
 - Store news

- **Structured content populators**
 - Store entities and statements

Data Sources

Knowledge Store

Interlinking Unstructured and Structured Knowledge in an Integrated Framework - Corcoglioniti at al.
Role of the KS

Resource processors
- Tokenization; lemmatization;
- POS tagging; WSD;
- Dependency parsing;
- Keyphrase extraction …

Mention processors
- Named entity & event recognition;
- Semantic role labelling;
- Relation extraction;
- Wikification …

Entity processors
- Coreference; event chaining & significance;
- Extraction of narrative graphs;
- Knowledge fusion …

Knowledge Store

Unstructured content populators
- Store entities and statements

Structured content populators
- Store news

Data Sources

Resource layer
- Read resources

Mention layer
- Write mentions
- Read mentions & imported statements

Entity layer
- Write entities & statements
- Read mentions & imported statements

Knowledge Store
- Write entities & statements

Resource processors
- Write annotations & mentions
- Read annotations

Mention processors
- Write mentions

Entity processors
- Write entities & statements
- Read mentions

Data Sources
- Store news

Unstructured content populators
- Store entities and statements
Role of the KS

Resource processors
- tokenization; lemmatization; POS tagging; WSD; dependency parsing; keyphrase extraction ...

Mention processors
- named entity & event recognition; semantic role labelling; relation extraction; wikification ...

Entity processors
- coreference; event chaining & significance; extraction of narrative graphs; knowledge fusion ...

Knowledge Store

Unstructured content populators
- store news

Structured content populators
- store entities and statements

Data Sources

Applications
- decision support; information retrieval...

(read annotations & mentions) write mentions
(read mentions & imported statements) write entities & statements
(read annotations) write mentions
(read resources) read resources
(store news) store entities and statements
(mixed) queries

Interlinking Unstructured and Structured Knowledge in an Integrated Framework - Corcoglioniti at al.
The Knowledge Store Data Model
Achieving Flexibility

- Resource
 - dc:identifier: string
 - nie:isStoredAs: nfo:FileDataObject
 - ...attributes...
- Mention
 - dc:identifier: string
 - ...attributes...
- Entity
 - dc:identifier: string
 - predicate: anyURI
 - ...attributes...
- Statement
 - dc:identifier: string
 - predicate: anyURI
 - object: literal
 - type: anyURI
- RelationStatement
 - object: literal
 - relatedMention_i
- AttributeStatement
 - object: literal
 - relatedResource_i
- TypeStatement
 - type: anyURI
- nfo:FileDataObject
 - dc:format: mt:MediaType
 - nfo:fileName: string
 - nfo:fileSize: int
 - nfo:fileCreated: date
 - nfo:fileLastModified: date

configurable part of the data model
The Knowledge Store Data Model
Specialization for NewsReader

Interlinking Unstructured and Structured Knowledge in an Integrated Framework - Corcogli...
The Knowledge Store Data Model

Remarks

• Data model **grounded** in OWL 2

 - it allows **sharing** stored data on the Semantic Web, e.g., by publishing it as Linked Open Data

 - inference and data validation may be performed using an OWL 2 **reasoner**

• OWA and UNA to be considered!

• **Available @**

 - https://dkm.fbk.eu/ontologies/knowledgestore.html

 - https://dkm.fbk.eu/ontologies/newsreader.html
The Knowledge Store Interfaces

- Definition of interfaces by involving potential users (NLP, KR, DS)
 - fill in template describing possible operations
- Post-processing of collected operations to find commonalities and to further generalize them
- Organized in three main categories
 - CRUD operations
 - Intra-layer operations
 - Inter-layer operations
The Knowledge Store Interfaces

Example of inter-layer operation

<table>
<thead>
<tr>
<th>name</th>
<th>getResourcesFromEntity()</th>
</tr>
</thead>
<tbody>
<tr>
<td>description</td>
<td>given an entity, return a list of news in which it is mentioned</td>
</tr>
<tr>
<td>input</td>
<td>the entity URI</td>
</tr>
<tr>
<td>output</td>
<td>a list with essential info for each matching resource (e.g., id, title and date)</td>
</tr>
<tr>
<td>notes</td>
<td>an optional parameter may determine the amount of info to be returned</td>
</tr>
<tr>
<td>example</td>
<td>get resources mentioning entity nwr:E105</td>
</tr>
</tbody>
</table>
The Knowledge Store Architecture

Overview

Data Sources

Processors / Applications
E.g., linguistic processor, decision support tool, (semantic) search engine

Populators
E.g., bulk loading of structured and unstructured contents

Data Model

Ontology

Deployment Settings

Inference Rules

CRUD, intra-layer & inter-layer access patterns

CLIENTS

SERVER

Frontend

HBase + Hadoop
Resource - Mention - Entity - Statement

Triple Store
RDF Triples

Management Tools

Inference

Indexing

API

Configuration

Interlinking Unstructured and Structured Knowledge in an Integrated Framework - Corcoglioniti at al.
The Knowledge Store Architecture
HBase & Hadoop

• **Primary storage** for the Knowledge Store

• **Hadoop**
 - distributed (partitioned and replicated) file system, used to store the *unstructured* content (e.g., news texts).

• **HBase**
 - column oriented NoSQL database, used to store the *structured* content
 - three main **tables**: resources, mentions and statements
 - **Redundant** tables and schema **de-normalization** are employed to avoid expensive join operations
The Knowledge Store Architecture

Triple Store

- Statements are partially indexed in a triple store in order to enable efficient, inference-aware query answering
 - exclude from inference statements whose extraction confidence level is below a given threshold
- Stored as a \(\text{subject, predicate, object}\) triple within a named graph
 - context where the statement holds
- Accessible via SPARQL queries
- Reasoning based on closure materialization and custom rule-based inference
- Abstracting the actual triple store implementation by means of the OpenRDF Sesame Java API
- Current choice: Open Source Edition of the Virtuoso
 - excellent performances in recent benchmarks (April 2013)
The Knowledge Store Architecture

Front End

- Implements the external API of the KnowledgeStore by dispatching client requests to other components
 - majority of API operations is forwarded to a single component

- **Mixed queries** decomposed into:
 - one or more semantic queries, targeted at the triple store,
 - one or more retrieval operation for structured and unstructured data in Hadoop/Hbase
 - Example: all news mentioning that “Barack Obama” participated to a sport event

- **Replicated** to avoid single points of failure
Preliminary Version

Tested in the scope of the LiveMemories project
- http://www.livememories.org

Limitations
- no storing of and reasoning on events and related information
- no triple store / semantic queries mechanism

Some stats:
- Resources: ~800K (~56 GB) of textual news, images and videos in Italian language
- Mentions: ~12M
- Entities: ~420K
Conclusions

- We presented the KnowledgeStore:
 - a framework enabling to jointly store, manage, retrieve, and semantically query, both unstructured and structured content
 - enables the development of enhanced applications, and favors the design and empirical investigation of several information processing tasks

- Implementation is on-going
 - first complete prototype planned for Dec 2013

- We plan to validate the KnowledgeStore idea in NewsReader
 - functional evaluation
 - store an overwhelming daily stream of economical and financial contents
 - support a complex NLP pipeline in extracting knowledge
 - provide suitable online and offline query capabilities
 - performance evaluation
 - scalability with respect to data size, query load
 - tolerance to nodes and network failures
Thank you! Questions?

Marco Rospocher

Fondazione Bruno Kessler,
Data and Knowledge Management Unit
Trento, Italy
rospocher@fbk.eu :: https://dkm.fbk.eu/rospocher