Joint Posterior Revision of NLP Annotations via Ontological Knowledge

Marco Rospocher (rospocher@fbk.eu), Francesco Corcoglioniti (corcoglio@fbk.eu)

1. Problem: Incoherent Mention-level NLP Annotations

Eric Clapton is one of the greatest guitar players.

Mr. Washington was runner-up at Wimbledon in 1996.

The GW Bridge is a suspension bridge over the Hudson.

2. Solution: Coherence via Ontology

ontological background knowledge

\[\text{Estimating NERC} \]
\[P(C | \delta_{\text{NERC}}; K) = \alpha \cdot P(C | K) + (1 - \alpha) \cdot P(C | \delta_{\text{NERC}}; G) \]

\[\text{Estimating EL} \]
\[P(C | \delta_{\text{EL}}; K) = 1 \cdot \{C_K(a_0)\} \{C\} \]

3. General Probabilistic Model

Variables

- \(m \) entity mention
- \(a \) \((a_1, \ldots, a_k)\) NLP annotations
- \(B \) NLP Background Knowledge
- \(K \) “The” Ontological Knowledge
- \(C \) Entity’s ontological class set (from K)

Conditional Independence Assumptions

1. \(P(a|m, B, K, C) = \prod_i P(a_i|m, B, K, C) \)
2. \(P(a_i|m, B, K) = P(a_i|m, B) \)
3. \(P(C | a_i, m, B, K) = P(C | a_i, K) \)

\[P(a|m, B, K) = \sum_C P(a, C|m, B, K) \]

\[P(a, C|m, B, K) = \frac{P(C|m, B, K) \cdot P(a|m, B, K, C)}{P(C|m, B, K) \cdot \prod_i P(a_i|m, B, K, C)} \]

\[P(C|m, B, K) = \left(\prod_i P(a_i|m, B, K) \right)^\frac{1}{n} \]

\[P(C | a_i, m, B, K) = \frac{P(a_i|m, B, K) \cdot P(C | a_i, m, B, K)}{P(a_i|m, B)} \cdot P(C | a_i, K) \]

4. Model Instantiated on NERC + EL

Ontological Background Knowledge

- 6,016,695 entities
- Taxonomy of 568,255 classes

Estimating NERC

\[\frac{n_K(C)}{\sum_{C'} n_K(C')} \text{ Prior (popularity based on entity ingoing links)} \]

\[\frac{n_G(C, a_{\text{NERC}})}{\sum_{C'} n_G(C', a_{\text{NERC}})} \text{ Computed from gold corpus (NERC + class annotations)} \]

Consider only class sets restricted to popular classes (seen at least \(n \) times in the gold corpus)

Estimating EL

Deterministically computable from the classes of the entity (possibly leveraging alignments between EL Knowledge Base and YAGO)

5. Evaluation

Tools: Stanford CoreNLP, DBpedia Spotlight

Gold Corpus (NERC): AIDA CoNLL-YAGO (train)

Datasets:

1. AIDA CoNLL-YAGO (test-b)
2. MEANTIME
3. TAC-KBP

Research question: Does the JPARK posterior joint revision of the annotations from Stanford CoreNLP (NERC) and DBpedia Spotlight (EL), via YAGO, improve their performances?

Measures: NERC / EL / NERC+EL

<table>
<thead>
<tr>
<th>Tools</th>
<th>NERC P</th>
<th>R</th>
<th>F1</th>
<th>EL P</th>
<th>R</th>
<th>F1</th>
<th>NERC+EL P</th>
<th>R</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIDA standard</td>
<td>94.30%</td>
<td>90.80%</td>
<td>90.80%</td>
<td>87.50%</td>
<td>84.50%</td>
<td>84.50%</td>
<td>63.00%</td>
<td>62.50%</td>
<td>63.00%</td>
</tr>
<tr>
<td>with JPARK</td>
<td>95.00%</td>
<td>88.10%</td>
<td>91.40%</td>
<td>78.10%</td>
<td>65.40%</td>
<td>66.20%</td>
<td>65.50%</td>
<td>63.70%</td>
<td>63.40%</td>
</tr>
<tr>
<td>MEANTIME</td>
<td>90.40%</td>
<td>72.00%</td>
<td>80.50%</td>
<td>78.50%</td>
<td>55.70%</td>
<td>62.20%</td>
<td>67.00%</td>
<td>51.10%</td>
<td>59.20%</td>
</tr>
<tr>
<td>TAC-KBP</td>
<td>3.20%</td>
<td>2.00%</td>
<td>2.00%</td>
<td>0.20%</td>
<td>0.10%</td>
<td>0.10%</td>
<td>3.20%</td>
<td>2.80%</td>
<td>3.10%</td>
</tr>
</tbody>
</table>

Restricted to gold mentions; similar improvements also considering all mentions, and macro-averaging by document or by NERC type.